skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boulay, M G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The existence of dark matter in the universe is inferred from abundant astrophysical and cosmological observations. The Global Argon Dark Matter Collaboration (GADMC) aims to perform the searches for dark matter in the form of weakly interacting massive particles (WIMPs), whose collisions with argon nuclei would produce nuclear recoils with tens of keV energy. Argon has been considered an excellent medium for the direct detection of WIMPs as argon-based scintillation detectors can make use of pulse shape discrimination (PSD) to separate WIMP-induced nuclear recoil signals from electron recoil backgrounds with extremely high efficiency. However, argon-based direct dark matter searches must confront the presence of intrinsic39Ar as the predominant source of electron recoil backgrounds (it is a beta-emitter with an endpoint energy of 565 keV and half-life of 269 years). Even with PSD, the39Ar activity in atmospheric argon (AAr), mainly produced and maintained by cosmic ray-induced nuclear reactions, limits the ultimate size of argon-based detectors and restricts their ability to probe very-low-energy events. The discovery of argon from deep underground wells with significantly less39Ar than that in AAr was an important step in the development of direct dark matter detection experiments using argon as the active target. Thanks to pioneering research and successful R&D, in 2012, the first 160 kg batch of underground argon (UAr) was extracted from a CO2well in Cortez, Colorado. The DarkSide-50 experiment at the Gran Sasso National Laboratory (LNGS) in Italy, the first liquid argon detector ever operated with a UAr target, demonstrated a ∼ 1,400 suppression of the39Ar activity with respect to the atmospheric argon. An even larger suppression is expected for42Ar (another intrinsic beta-emitter with the42K daughter isotope, also a beta-emitter) as its production is expected mainly in the upper atmosphere. Following the results of DarkSide-50, the GADMC initiated the UAr project for extraction from underground and cryogenic purification of 100 t of argon to be used as a target in the next-generation experiment DarkSide-20k. This paper contains a description of the Urania Plant in Cortez, Colorado, where UAr is extracted; the Aria Plant in Sardinia, Italy, an industrial-scale plant comprising a 350-m state-of-the-art cryogenic isotopic distillation column, designed for further purification of the extracted argon and further reduction of the isotopic abundance of39Ar; and DArT, a facility for UAr radiopurity qualification at the Canfranc Underground Laboratory (LSC), Spain. Moreover, the high radiopurity of UAr leads to other possible applications, for instance, for those neutrinoless double-beta decay experiments using argon as shielding material or, more generally, for all those activities on argon-based detectors in high-energy physics or nuclear physics, which will be briefly discussed. 
    more » « less
    Free, publicly-accessible full text available December 5, 2025
  2. SiPM-based readouts are becoming the standard for light detection in particle detectors given their superior resolution and ease of use with respect to vacuum tube photo-multipliers. However, the contributions of noise detection such as the dark rate, cross-talk, and after-pulsing (AP) may significantly impact their performance. In this work, we present the development of highly reflective single-phase argon chambers capable of displaying light yields up to 32 photo-electrons per keV, with approximately 12 being primary photo-electrons generated by the argon scintillation, while the rest are accounted by optical cross-talk. Furthermore, the presence of compound processes results in a generalized Fano factor larger than 2 already at an over-voltage of 5 V. Finally, we present a parametrization of the optical cross-talk for the FBK NUV-HD-Cryo SiPMs at 87 K that can be extended to future detectors with tailored optical simulations. 
    more » « less
  3. Abstract A large number of particle detectors employ liquid argon as their target material owing to its high scintillation yield and its ability to drift ionization charge over large distances. Scintillation light from argon is peaked at 128 nm and a wavelength shifter is required for its efficient detection. In this work, we directly compare the light yield achieved in two identical liquid argon chambers, one of which is equipped with polyethylene naphthalate (PEN) and the other with tetraphenyl butadiene (TPB) wavelength shifter. Both chambers are lined with enhanced specular reflectors and instrumented with SiPMs with a coverage fraction of approximately 1%, which represents a geometry comparable to the future large scale detectors. We measured the light yield of the PEN chamber to be  39.4 $$\,\pm \,$$ ± 0.4(stat) $$\,\pm \,$$ ± 1.9(syst)% of the yield of the TPB chamber. Using a Monte Carlo simulation this result is used to extract the wavelength shifting efficiency of PEN relative to TPB equal to 47.2 $$\,\pm \,$$ ± 5.7%. This result paves the way for the use of easily available PEN foils as a wavelength shifter, which can substantially simplify the construction of future liquid argon detectors. 
    more » « less
  4. Abstract DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with 50 tonnes of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Trento, Italy) were selected as the photon sensors covering two$$10.5~\text {m}^2$$ 10.5 m 2 Optical Planes, one at each end of the TPC, and a total of$$5~\text {m}^2$$ 5 m 2 photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK NUV-HD-cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77 K at the wafer level with a custom-designed probe station. As of March 2025, 1314 of the 1400 production wafers (94% of the total) for DarkSide-20k were tested. The wafer yield is$$93.2\pm 2.5$$ 93.2 ± 2.5 %, which exceeds the 80% specification defined in the original DarkSide-20k production plan. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. The dual-phase liquid argon time projection chamber is presently one of the leading technologies to search for dark matter particles with masses below 10 GeV c−2. This was demonstrated by the DarkSide-50 experiment with approximately 50 kg of low-radioactivity liquid argon as target material. The next generation experiment DarkSide-20k, currently under construction, will use 1,000 times more argon and is expected to start operation in 2027. Based on the DarkSide-50 experience, here we assess the DarkSide-20k sensitivity to models predicting light dark matter particles, including Weakly Interacting Massive Particles (WIMPs) and sub-GeV c−2 particles interacting with electrons in argon atoms. With one year of data, a sensitivity improvement to dark matter interaction cross-sections by at least one order of magnitude with respect to DarkSide-50 is expected for all these models. A sensitivity to WIMP–nucleon interaction cross-sections below 1 × 10−42 cm2 is achievable for WIMP masses above 800 MeV c−2. With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV c−2. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  6. Abstract The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: $${}^{36}\hbox {Ar}$$ 36 Ar , $${}^{38}\textrm{Ar}$$ 38 Ar , and $${}^{40}\textrm{Ar}$$ 40 Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019. 
    more » « less
  7. Abstract Aria is a plant hosting a$${350}\,\hbox {m}$$ 350 m cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of$${^{39}\hbox {Ar}}$$ 39 Ar in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed,$${^{39}\hbox {Ar}}$$ 39 Ar is a$$\beta $$ β -emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant. 
    more » « less
  8. null (Ed.)
    Abstract Proportional electroluminescence (EL) in noble gases is used in two-phase detectors for dark matter searches to record (in the gas phase) the ionization signal induced by particle scattering in the liquid phase. The “standard” EL mechanism is considered to be due to noble gas excimer emission in the vacuum ultraviolet (VUV). In addition, there are two alternative mechanisms, producing light in the visible and near infrared (NIR) ranges. The first is due to bremsstrahlung of electrons scattered on neutral atoms (“neutral bremsstrahlung”, NBrS). The second, responsible for electron avalanche scintillation in the NIR at higher electric fields, is due to transitions between excited atomic states. In this work, we have for the first time demonstrated two alternative techniques of the optical readout of two-phase argon detectors, in the visible and NIR range, using a silicon photomultiplier matrix and electroluminescence due to either neutral bremsstrahlung or avalanche scintillation. The amplitude yield and position resolution were measured for these readout techniques, which allowed to assess the detection threshold for electron and nuclear recoils in two-phase argon detectors for dark matter searches. To the best of our knowledge, this is the first practical application of the NBrS effect in detection science. 
    more » « less